Signatures of selection in mammalian clock genes with coding trinucleotide repeats: Implications for studying the genomics of high‐pace adaptation
نویسندگان
چکیده
Climate change is predicted to affect the reproductive ecology of wildlife; however, we have yet to understand if and how species can adapt to the rapid pace of change. Clock genes are functional genes likely critical for adaptation to shifting seasonal conditions through shifts in timing cues. Many of these genes contain coding trinucleotide repeats, which offer the potential for higher rates of change than single nucleotide polymorphisms (SNPs) at coding sites, and, thus, may translate to faster rates of adaptation in changing environments. We characterized repeats in 22 clock genes across all annotated mammal species and evaluated the potential for selection on repeat motifs in three clock genes (NR1D1,CLOCK, and PER1) in three congeneric species pairs with different latitudinal range limits: Canada lynx and bobcat (Lynx canadensis and L. rufus), northern and southern flying squirrels (Glaucomys sabrinus and G. volans), and white-footed and deer mouse (Peromyscus leucopus and P. maniculatus). Signatures of positive selection were found in both the interspecific comparison of Canada lynx and bobcat, and intraspecific analyses in Canada lynx. Northern and southern flying squirrels showed differing frequencies at common CLOCK alleles and a signature of balancing selection. Regional excess homozygosity was found in the deer mouse at PER1 suggesting disruptive selection, and further analyses suggested balancing selection in the white-footed mouse. These preliminary signatures of selection and the presence of trinucleotide repeats within many clock genes warrant further consideration of the importance of candidate gene motifs for adaptation to climate change.
منابع مشابه
Codon bias patterns in photosynthetic genes of halophytic grass Aeluropus littoralis
Codon bias refers to the differences in the frequency of occurrence of synonymous codons in coding DNA. Pattern of codon and optimum codon utilization is significantly different between the lives. This difference is due to the long term function of natural selection and evolution process. Genetics drift, mutation and regulation of gene expression are the main reasons for codon bias. In this stu...
متن کاملMining functional microsatellites in legume unigenes
Highly polymorphic and transferable microsatellites (SSRs) are important for comparative genomics, genome analysis and phylogenetic studies. Development of novel species-specific microsatellite markers remains a costly and labor-intensive project. Therefore, interest has been shifted from genomic to genic markers owing to their high inter-species transferability as they are developed from conse...
متن کاملPhylogenetic Analysis of Three Long Non-coding RNA Genes: AK082072, AK043754 and AK082467
Now, it is clear that protein is just one of the most functional products produced by the eukaryotic genome. Indeed, a major part of the human genome is transcribed to non-coding sequences than to the coding sequence of the protein. In this study, we selected three long non-coding RNAs namely AK082072, AK043754 and AK082467 which show brain expression and local region conservation among vertebr...
متن کاملSignatures of natural selection and local adaptation in Populus trichocarpa and Populus deltoides along latitudinal clines
Trees, like many other organisms, decrease their rate of metabolic activities to cope up with harsh environments. This stage of ‘dormancy’ is marked by shedding of leaves and bud-set in deciduous trees. Recent studies have revealed the role of the circadian clock in synchronizing the timing of dormancy and physiology for conferring fitness in trees. To better understand the possible role of nat...
متن کاملP-119: Survey of Genetic Alterations in Exon1 of Androgen Receptor Gene in Azoospermic Patients
Background Androgen receptor (AR) mediates androgen actions such as initiation and promotion of spermatogenesis and growth of accessory sex organs. There are two trinucleotide polymorphisms (CAG and GGN repeats) in exon1 of AR gene that are vary in length in population. The CAG and GGN repeats association with infertility is still unknown and this study is planned to assess the distribution of ...
متن کامل